石墨烯是碳原子以sp2杂化轨道构筑的六角蜂巢型晶格平面二维碳纳米材料,这种稳定的晶体结构赋予其优异的力学、热学、光学、电学性能以及独特量子特性,可广泛应用于高性能复合材料、催化剂、能量管理、电磁防护以及低维器件等技术领域。为充分利用其优异力学和传导性能,人们研发了宏观纸(或膜),并探索其在航空航天材料、柔性电子器件、功能材料与结构等领域应用,研发诸如超级电容器、纳米发电机、水处理膜、锂离子电池元件、多功能传感器和电磁波屏蔽材料等。尽管标准二维石墨烯单元结构的力学强度很高,但是其面积很小,且通常不具备自支撑能力,无法满足应用产品甚至表征评价的基本要求。为此,寻求石墨烯的高效交联技术成为获得高性能石墨烯膜材料的关键所在。
通过向石墨烯及其复合结构中引入物理化学相互作用,如共价键、离子键、氢键等,可以实现对二维石墨烯界面相互作用力的调节,从而对其力学性能进行增强。其中,利用π-π相互作用对二维石墨烯材料进行增强改进其力学性能的同时,提高其电导和导热性能;但这种太强的单一交联作用往往影响石墨烯基材料的柔韧性。基于多尺度π-π相互作用的调控方法则少有研究。
近日,西南交通大学材料先进技术教育部重点实验室周祚万教授、孟凡彬副教授课题组提出基于多尺度π-π交联的石墨烯基纸增强新机制,获得了一种高强度、高韧性、高传导性石墨烯纸,其抗拉强度625.2 MPa、韧性28.5 MJ/m3、电导率233.4 S/cm。该论文第一作者为博士生王颖。基于真空抽滤成膜技术,他们首先通过碳纳米管与石墨烯复合,引入碳纳米结构的π-π作用;然后引入具有稠环结构的芘丁酸(PBA)和不同碳链长度的线性二胺(diamine)柔性交联剂,让其通过芳稠环-碳纳米(石墨烯、碳纳米管)之间的π-π交联而发挥“补丁”和柔性交联剂作用,实现了对碳纳米复合纸的强韧化调控(图1)。